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Abstract

The Learning from Demonstration (LfD) paradigm has exhibited notable efficacy in
addressing sequential decision-making problems within the domain of autonomous
driving. However, consistently achieving safety in varying traffic contexts, espe-
cially in safety-critical scenarios, poses a significant challenge due to the long-tailed
and unforeseen scenarios absent from offline datasets. In this paper, we introduce
the saFety-aware strUctured Scenario representatION (FUSION), a pioneering
methodology conceived to facilitate the learning of an adaptive end-to-end driving
policy by leveraging structured scenario information. FUSION capitalizes on the
causal relationships between decomposed reward, cost, state, and action space,
constructing a framework for structured sequential reasoning under dynamic traffic
environments. We conduct rigorous evaluations in two typical settings of distribu-
tion shift for autonomous vehicles, demonstrating the good balance between safety
cost and utility reward of FUSION compared to contemporary state-of-the-art
safety-aware LfD baselines. Empirical evidence under diverse driving scenarios
attests that FUSION significantly enhances the safety and generalizability of au-
tonomous driving agents, even in the face of challenging and unseen environments.
Furthermore, our ablation studies reveal noticeable improvements in the integration
of causal representation into the safe offline RL problem.

1 Introduction

Learning from Demonstration (LfD) techniques, such as Imitation Learning (IL) and offline Rein-
forcement Learning (RL) [1, 2, 3, 4], have revolutionized end-to-end frameworks in autonomous
vehicles. Nonetheless, the safety and generalizability of learning-based driving policies across diverse
scenarios remain elusive [5, 6, 7]. These challenges become even more pronounced in intricate
contexts involving complex vehicle-to-road and vehicle-to-vehicle interaction. Prior studies [8, 9]
illustrate that minor domain shifts in road structures or surrounding vehicles can result in catastrophic
outcomes, given the high-stakes nature of autonomous driving.

While existing research has successfully applied end-to-end learning-based algorithms to racing
cars [10, 11, 12], urban driving scenarios remain a puzzle. The complexity arises from the fact that
urban settings demand robust structural reasoning from context-rich, safety-critical situations [13].
For instance, humans can effortlessly adapt their driving behaviors based on static contexts like
roadblocks or dynamic contexts such as surrounding traffic, often making intuitive judgments, as
illustrated in Figure. 1. Although such abstraction is straightforward to humans with high reasoning
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capabilities, end-to-end approaches like vanilla deep RL methods usually fail due to the distribution
shift under diverse driving scenarios, leading to a consequence of staying either over-conservative
or over-aggressive. As a consequence, two pivotal challenges emerge under such distribution shifts:
(i) striking a balance between safety and driving efficiency, and (ii) ensuring safety performance in
unseen driving contexts.

Figure 1: Diagram depicting offline-to-online
generalization via a modular reasoning frame-
work. The agent learns a causal abstraction
from offline demonstration trajectories and
then applies it to different environmental com-
ponents during online implementation. This
abstracted representation enables learning ag-
ile agents for unseen scenarios in a zero-shot
manner while enhancing safety and efficiency.

Recent LfD advancements in autonomous driving
have strived for safety improvements through various
means, including agile actions [1, 3], object-centric
world models [5, 6, 14, 15], safety-enhanced scene
representation [7, 16], and structure-aware represen-
tation of multi-modal sensory inputs [17]. Moreover,
techniques like domain-invariant IL [18] and hier-
archical IL [19] further bolster the generation of a
safe and universally applicable causal representation.
However, a recurring limitation is the presupposition
of access to perfect expert demonstrations, which are
often unattainable in intricate urban scenarios.

To circumvent the reliance on impeccable expert
demonstrations, researchers are pivoting towards RL-
based techniques, encompassing offline RL [20, 21]
and safe RL [22, 23]. These methodologies harbor
the potential to equilibrate RL agents’ priorities be-
tween safety and efficiency, especially when learn-
ing from non-expert demonstrations. Encouragingly,
some studies [12, 24] even manage to surpass expert
policies during online deployment by utilizing these
batch RL methods, which draw from enhanced real-
world data. However, a prevailing assumption – often
misguided – is that online environments will mirror
the dynamics of those from which offline trajectories
were sourced. In reality, the scarcity and lack of diversity in available data, exacerbated when priori-
tizing safety, curtails the generalizability of offline RL. This is particularly apparent in autonomous
driving, where both static (e.g., road layouts) and dynamic (e.g., traffic flow) contexts differ markedly
across locales. As a result, achieving generalizability in unseen environments remains challenging.

In this study, we introduce saFety-aware strUctural Scenario representatION (FUSION), which aims
to improve the generalizability of safety performance of self-driving cars in unseen scenarios. More
concretely, our contributions are summarized as follows:

• We introduce a safety-aware offline reinforcement learning framework that successfully balances
the trade-off between efficiency and safety, termed the Causal Ensemble World Model (CEWM).

• We develop a Causal Bisimulation Learning (CBL) paradigm that regularizes the state represen-
tation in a compact way, enabling better generalizability towards OOD state inputs during the
online deployment stage.

• We provide comprehensive evaluations on the offline dataset collected from the human beings
and Intelligent Driver’s Model (IDM), showing the advantage of FUSION over existing baselines
in offline safe IL and RL.

2 Problem Formulation

As stated in the Introduction section, this work aims to tackle a generalizable safe RL problem under
some distribution shifts in different task domains. To better model such distribution shift, we follow
the definition of contextual MDP in [25] to define the Constrained Contextual Markov Decision
Process, or C2-MDP, to model this generalizable safe RL problem as follows:

Definition 1. Constrained Contextual Markov Decision Process (C2-MDP) is a Contextual MDP
with a tuple

(
P,M(ω)

)
, whereM is a function that maps any contexts ω ∈ P to a constrained

MDPM(ω) =
(
S,A, Tω, r, c, s0, γ

)
,
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where Tω : S ×A×P → S is the context-specific transition function, r : S ×A → R is the reward
function, c : S × A → R is the cost function, s0 is the initial state, and γ is the discount factor.
C2-MDP defines the safety cost as an intuitive additional performance preference for the driving
agents. Also, it includes different MDPs according to different contexts ω. This additional context
aims to model the phenomena that the traffic environment varies across different contexts (e.g. road
types or traffic densities) in the autonomous driving scenarios.

Following the above definition, we introduce our problem formulation and then give a sketch of
our proposed learning pipeline for generalizable safe RL problems in autonomous driving. Based
on the Definition 1, the Constrained Contextual MDP aims to maximize the cumulative reward
while satisfying the safety constraints over the cumulative expected cost under a certain target
context ω. In formal terms, our problem can be defined as the following constrained optimization
problem maxπ Jr(π, ω) s.t. Jc(π, ω) ≤ κc, where we define the reward objective Jr(π, ω) ≜
Eω,π

∑T
t=1 r(st, at) and similarly the cost objective, Jc(π, ω) = Eω,π

∑T
t=1 c(st, at).

To achieve generalizable safety, we aim to optimize a policy that satisfies safety constraints:
Jc(π, ω) ≤ c,∀π ∈ Π, ω ∈ Ω, i.e. imposing constraint satisfaction under varying behavior policies
πβ and environment contexts ω. Meanwhile, we assume that the preference of the reward function r
and the cost function c remain unchanged across different contexts.

In our autonomous driving problem, the reward is composed of a forwarding reward in the longitude
direction, a continuous reward for the vehicle speed, and an additional sparse reward once the vehicles
reach the goal or other terminal states:

rt = wr
1rforward + wr

2rspeed + wr
3rterm

= wr
1(dt − dt−1) + wr

2vt + wr
3I(st = g)

(1)

In our urban driving task: the safety cost comes from (i) collision with others, (ii) out-of-road
conditions, and (iii) over-speeding. The collision and out-of-road costs are binary indicators that are
1 only when they occurs, and the over-speeding cost is a continuous cost that occurs once the vehicle
goes over a certain speed limit vlimit.

ct = wc
1ccollision + wc

2cout road + wc
3coverspeed

=wc
1I(s ∈ scollision) + wc

2I(s /∈ sroad) + wc
3 max(0, vt − vlimit)

(2)

The core problem in this paper is to learn a safe policy with good generalizability under some
distribution shifts. In autonomous driving scenarios, we wish the agents could generalize (i) between
offline data collected from mixed-quality policies and online environments, i.e. πβ ̸= π∗, and (ii)
between varying contexts of C2-MDP, i.e. training environments ωtrain for data collection are
different from online testing environments ωtest. Such difference also indicates the difference in the
MDPM(ω1) ̸=M(ω2). More specifically, we define the distribution shift in transition dynamics
(e.g. the density of the traffic) as follows: p(·|s, a;ωtrain) ̸= p(·|s, a;ωtest).

3 Methodology

In this section, we zoom in on more details about our proposed FUSION with two important
modules: (i) Causal Ensemble World Model (CEWM), and (ii) safety-aware Causal Bisimulation
Learning (CBL).

3.1 Causal Ensemble World Model Learning

In autonomous driving problems, the entire state space can be decomposed into several disjoint sub-
spaces [17], including the (estimated) ego navigation state, lidar observation, and visual observation,
e.g. the birds-eye-view observation that serve as input to FUSION in Figure 2.

Definition 2 (Factorizable State Space). The factorizable state space in MDP indicates a disjoint
state space decomposition, where S = S1 ∪ S2 ∪ · · · ∪ SN , and N indicates how many disjoint state
components we have in a certain problem.
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Figure 2: Overview of Safety-aware structural Scenario Representation Framework. The left diagram
shows a safety-aware decision transformer that conducts sequential decision-making based on the
temporal contexts. The right diagram shows the general form of the graphical model in the CEWM
and Policy Learning modules in FUSION, where the connection between different timesteps will be
determined by the attention weights in the causal transformer. The nodes at a later timestep depend
on their parental nodes in the previous timesteps.

Algorithm 1: Training and Inference of FUSION
Data: Context length H , Reward target R0, Cost

limit C0

Result: Policy πθ,ϕ

/* Offline Training */
for k = 0, · · · , N − 1 do

Update Transformer θ with CEWM by (4);
Update Encoder ϕ with CBL by Alg. 2;

/* Online Inference with context H */
s0 ← env.reset();
o← {C0, R0, s0};
a0 ← πθ,ϕ(o);
for t = 1, · · · , T − 1 do

Rollout: st, rt, ct = env.step(at−1);
Predict reward value: R̂(st, at)← ϕr(st);
Predict cost value: Ĉ(at, st)← ϕc(st);
Update rtg token:
Rt ← max{R̂(st, at), Rt−1 − rt};

Update ctg token:
Ct ← min{Ĉ(st, at), Ct−1 − ct};

Update context: o← {{at−1, Ct, Rt, st}}t−H:t;
Predict action: at ← πθ,ϕ(o) ;

To help the FUSION framework gain
better awareness of the structure of
the state and action space, we propose
the CEWM based on multi-modal ob-
servations, as is defined The factor-
ized state space Definition 2, along
with the reward, cost, and action vari-
ables, form the nodes in this world
model. To better describe the struc-
tural dependency between them, we
further design the CEWM according
to the following definition of Struc-
tured Causal Model (SCM).
Definition 3. An SCM (S, E) consists
of a set of variables S, along with d
functions [26],

sj := fj(PA
G(sj), ϵj), j ∈ [d],

where PAG
j ⊂ {s1, . . . , sd}\{sj}

are called parents of sj in the Di-
rected Acyclic Graph (DAG) G, and
E = {ϵ1, . . . , ϵd} follows a joint
distribution over the noise variables,
which are required to be jointly inde-
pendent.

For general offline RL problems, SCM aims to jointly parameterize the world model as well as
the policy model between different nodes in the state, action, reward, and safety cost. In order to
parameterize the functions f in this SCM, we use a Safety-aware Causal Transformer, as is shown in
Figure 2. For instance, the child node sj is determined by its parent tokens PAG

t (sj) in the previous
tokens τt−H:t, and the exogenous noise variable ϵj , which are aggregated by a variable-specific
function fj empowered by the attention mechanism of Transformer. The edges between different
nodes represent their causal dependency in the spatiotemporal domain, which is essentially captured
by the attention weights, as we will discuss later in Figure 5 of the experiment parts. Besides capturing
the cause-and-effect relationship between the reward, cost, and factorizable state space, the SCM also
enjoys a great property in that the child nodes (e.g. the state and reward/cost in subsequent timesteps)
are only dependent on their parent nodes (in the state or action space in the previous timesteps),
while removing the unnecessary dependencies between the descendent nodes to indirect ancestors or
non-parent nodes. Such property improves both generalizability and efficiency for an autoregressive
inference during the online deployment.
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Based on this property, we derive the CEWM under the SCM, which can then be decomposed into the
following disjoint components, including the reward-to-go model, cost-to-go model, the factorized
state-action transition dynamics, and the policy optimization, as is shown below:

p(τt|τt−H:t) = p(at, st, Rt, Ct|at−1, st−1 · · ·Rt−H , Ct−H)

= p
(
rt|PAG

t (rt)
)

︸ ︷︷ ︸
Reward-to-go

p
(
ct|PAG

t (ct)
)

︸ ︷︷ ︸
Cost-to-go

p
(
at+1|PAG

t (at+1)
)

︸ ︷︷ ︸
Policy Optimization

∏
i∈dim(S)

p
(
sit+1|PA

G
t (s

i
t+1)

)
︸ ︷︷ ︸

Factorized Dynamics

(3)

Therefore, we exert an auxiliary task of trajectory optimization in the optimization process of
safety-aware decision transformer to estimate the three components in (3), i.e.

Ltraj = − log p(τt+1|τt−H:t) = − log p(Rt|PAG
t (Rt))

− log p(Ct|PAG
t (Ct))− log p(at+1|PAG

t (at+1))−
∑

i∈dim(S)

log p(sit+1|PA
G
t (s

i
t+1))

= Lrtg + Lctg + Lact + Ldyn

(4)

This trajectory optimization objective benefits our safety-aware DT with better structural awareness
of the trajectory level between the state, action, reward-to-go, and cost-to-go. The design of this
safety-aware DT model manages to parameterize CEWM that we propose in (3), as the latter token is
generated conditioned on the previous tokens in an auto-regressive way.

3.2 Safety-aware Bisimulation Learning

Figure 3: Safety-aware bisimulation metrics with
the distribution distance in transition dynamics,
rewards, and safety cost.

Though CEWM provides an explicit structure
to model the causality, learning such a model
from offline datasets is non-trivial. The reason is
that demonstrations in the mixed-quality dataset
have diverse levels of safety due to spurious cor-
relations between actions and states. To avoid
getting misled by such spurious correlation, we
introduce an additional self-supervised regular-
ization term in an implicit way, namely Causal
Bisimulation Learning, or CBL.

Inspired by the DBC algorithm for off-policy
RL in [27], we further regularize the FUSION
model with safety-aware Bisimulation Learning in our offline RL setting. We first extend the
traditional bisimulation relationships for MDP in [27, 28] with an extra safety term:
Definition 4 (Safety-aware Bisimulation Relation). A safety-aware bisimulation relation U ⊂ S × S
is a binary relation which satisfies, ∀(s1, s2) ∈ U: ∀a ∈ A, r(s1, a) = r(s2, a), ∀a ∈ A, c(s1, a) =
c(s2, a), ∀a ∈ A, s′ ∈ S, p(s′|s1, a) = p(s′|s2, a).

Algorithm 2: Safety-aware CBL
Data: Offline (mixed) trajectories from

controller/human, cost limit C
Result: Policy π’s state encoder ϕ
for k = 0, · · · , N − 1 do

Sample minibatch: B ← Sample(Dπβ
);

Construct transition pairs: (s1, a1, s′1)← B ;
Permute samples: (s2, a2, s′2)← permute(B) ;
Compute bisimulation distance: With (5) ;
Update encoder: ϕk+1 ← ϕk −∇ϕLbisim
with (6);

Intuitively, in the Constrained MDP
setting, the bisimilarity between two
states is not only determined by the
step-wise reward and transition dy-
namics but also by their similarity in
the step-wise cost. In practice, the re-
ward, cost, and transition dynamics
could hardly match exactly for two
different states, therefore, we propose
a smooth alternative [29] of safety-
aware bisimulation relationship, de-
noted as Safety-aware Bisimulation
Metrics as is shown in Figure 3:
Definition 5 (Safety-aware Bisimula-
tion Metrics). The bisimulation met-
ric dπ : S × S → R+ is a mapping from the joint state space to a non-negative scalar. According to
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the definition of the safety-aware bisimulation relationship, the distance is defined as:

dπ(s1, s2) = E a1∼π(·|s1),

a2∼π(·|s2)

[
|r(s1, a1)− r(s2, a2)|

+ λ|c(s1, a1)− c(s2, a2)|+ γW2(p̂(·|s1, a1), p̂(·|s2, a2))
]
,

(5)

The Lagrangian multiplier λ aims to balance the safety term, and W2(·, ·) is the 2-Wasserstein
distance measuring the similarity between two transition dynamics distribution. We use the following
learning objectives to align the state representation with the bisimulation metrics in the latent space:

Lbisim = Es1,s2∼pπβ

(
∥ϕ(s1)− ϕsg(s2)∥1 − dπ(s1, s2)

)2

, (6)

where ϕsg means stop gradient of state encoder ϕ.

In the inference time, we greedily exploit the value prediction in the online inference time, as is
shown in Algorithm 1. Notably, we take the minimum cost-to-go preference and cost prediction,
and the maximum reward-to-go preference and reward prediction at each step. This strategy aims to
improve the safety and efficiency of FUSION given the preference in the online deployment stage.

4 Experiments

In this section, we first go through the environments and evaluation protocols that we use based on the
MetaDrive simulator [30]. Next, we conduct experiments and ablation studies to answer four research
questions, aiming to demonstrate how well our proposed methods could learn a safe and generalizable
policy based on the offline driver’s data. The evaluation results illustrate the effectiveness of the
FUSION model.

4.1 Experiment Setup

Evalation Environment We evaluate our algorithm on MetaDrive [30], a light-weighted, realistic,
and diverse autonomous driving simulator, which can specifically test the generalizability of learned
agents on unseen driving environments with its capability to generate an unlimited number of scenes
with various road networks and traffic flows.

The observation of the agents consists of the following components: (i) the ego states and navigation
information, which contains the estimation of the ego vehicle’s relative position with respect to
the closest waypoint for navigation; (ii) the LiDAR observation with 240 laser bins; (iii) the Birds-
eye-view (BEV) observation of the ego vehicle and surrounding vehicles, which is an 84×84×5
multi-channel image that describes the road contexts and the past trajectories of surrounding vehicles.

We collect the offline dataset by IDM polices [31] with diverse levels and styles of aggressiveness
of the ego and surrounding drivers. We manually set different acceleration and deceleration rates
to adjust the aggressiveness level in the IDM policy. The total offline dataset consists of 2,000
trajectories with more than 400,000 timesteps under six different road contexts.

Method Policy Mismatch Dynamics Mismatch
Reward (↑) Cost (↓) Succ. Rate (↑) Reward (↑) Cost (↓) Succ. Rate (↑)

Safe BC 106.28±7.49 12.79±0.70 0.47±0.10 81.07±3.80 9.44±0.55 0.12±0.06
ICIL 122.66±4.85 11.07±1.11 0.76±0.05 88.21±5.30 7.29±0.72 0.32±0.05
BNN 118.61±3.09 4.46±0.41 0.74±0.11 113.35±5.68 19.16±0.55 0.59±0.06
GSA 89.94±6.84 13.18±1.26 0.34±0.08 102.40±6.44 11.88±0.98 0.03±0.02

BEAR-Lag 109.62±3.91 4.46±0.29 0.72±0.06 113.38±5.25 7.86±0.66 0.32±0.05
BCQ-Lag 111.36±5.26 0.89±0.08 0.79±0.08 122.72±7.64 6.22±0.76 0.39±0.08

CPQ 9.01±0.87 1.05±0.18 0.00±0.00 7.47±0.59 0.71±0.09 0.00±0.00
FUSION 139.95±4.24 0.52±0.06 0.90±0.03 117.40±4.30 0.90±0.14 0.82±0.04

Table 1: Evaluation Performance in both policy mismatch and dynamics mismatch settings. Evalua-
tion metrics include (i) utility reward, the higher the better; (ii) safety cost, the lower the better; and
(iii) success rate, the higher the better. Each of the baseline results is evaluated under 5 random seeds.
Bold means the best.
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Our evaluation protocol includes the following three metrics: The Utility Reward metric evaluates
the efficacy and efficiency of autonomous vehicles to finish the task, which is a weighted combination
of the cumulative driving distance, driving speed, and waypoint arrival, as is introduced in (1). The
Safety Cost metric evaluates the overall safety level of autonomous vehicles, which comes from
three safety-critical scenarios in autonomous driving, including collision, out-of-lane, and over-speed,
as is defined in (2). The speed limit vlimit is set to be 40 kph. The Success Rate metric indicates the
ratio of episodes in which the agent successfully reaches the destination within a maximum number
of timesteps.

We test our methods in six different types of road configurations (see Figure 4). As introduced
in (2), the safety violation costs result from three sources: (i) collision, (ii) out-of-lane, and (iii)
over-speed. The cost for collision and out-of-lane is 1 at each occurrence, and the over-speed cost
cspeed = max{0, 0.02(v − vlimit)}. An episode will terminate if any one of the risky scenarios (i) (ii)
happens, or the overall timestep is greater than a preset decision horizon of 1,000. When the agent
reaches the destination without any collision or getting off the road, it will be counted as a success.

We compare our proposed methods and baselines in the following two settings. Policy Mismatch
stands for the case where the offline dataset is sampled from the non-perfect expert policy, and
the agents need to tackle the generalization challenge from mixed-quality and potentially unsafe
offline data towards the deployment in the online environment. Dynamics mismatch stands for
the case where the agent needs to tackle another generalization challenge from the training environ-
ments (where the offline data is collected) with sparser traffic flows, towards the testing environments
where the traffic flows are 1.5× denser than the training.
Baselines We illustrate our results by comparing FUSION against two types of baselines: (i) safe
imitation learning and (ii) offline safe reinforcement learning. Specifically, the implementation
of these baselines aims to solve the multi-modal sensory inputs in the sequential decision-making
problems of autonomous driving.

IL-based methods select safe trajectories or conduct uncertainty quantification to avoid getting into
uncertain and unsafe regions. This kind of baselines includes Safe Behavior Cloning (Safe BC [3])
that only uses safe trajectories to train the agent, Invariant Causal Imitation Learning (ICIL [18])
that derives invariant state abstraction to learn generalizable policies by the model ensemble, like
GSA [19] and BNN [17], which both use hierarchical state abstraction in generalizable decision
making.

On the other hand, the offline Safe RL baselines generally solve a constrained optimization problem
of C2-MDP by adding Lagrangian terms in the policy evaluation step. Two of them are BEAR La-
grangian (BEAR-Lag) and BCQ Lagrangian (BCQ-Lag), which are safety-aware variants of Offline
RL algorithms BEAR [21] and BCQ [20], respectively. Constrained Penalized Q-Learning (CPQ [22])
aims to learn safe policy by penalizing the cost from the offline dataset. All the Offline Safe RL
baselines set episodic cost constraint threshold κc = 1. Based on the design of the safety cost
introduced in Section 4.1, when the episodic cost is lower than 1, it means no critical violence,
including collision and out-of-lane, occurred in this episode.

Figure 4: The left figure shows the diverse scenarios of multiple road configurations in MetaDrive.
The right figure shows the analysis of the results under each of them. We compare the performance
of FUSION on different types of roads with Safe IL and offline RL baselines, as well as the expert
policy for offline RL. The larger lidar plot on each coordinate stands for the safer performance in each
safety metric. (AR: Arrival, NS: Not speeding, IT: In-time, CF: Collision-free, SL: Stay in-lane.)
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4.2 Results and Analysis

We design experiments and corresponding ablation studies to answer the following important research
questions:

• (RQ1) How does FUSION perform with non-perfect offline data with diverse behavior policies
from IDM and humans, compared with Safe Offline IL and RL baselines?

• (RQ2) How does FUSION perform under unseen dynamics that the offline dataset does not cover,
compared with all the baselines?

• (RQ3) Can FUSION consistently outperform other baselines and expert policies under diverse
road contexts?

• (RQ4) Do sequential modeling and causal representation learning benefit FUSION in capturing
spatio-temporal dynamics contexts?

For RQ1 and RQ2, we compare FUSION against the aforementioned baselines in both policy
mismatch and dynamics mismatch settings. The results in Table 1 clearly demonstrate the advantages
of FUSION against baselines in both safety cost and driving reward performance. (i) In the policy
mismatch setting where the agent needs to overcome the suboptimality of the offline data, FUSION
performs better in the reward (driving efficiency), cost (safety performance), and success rate.
Notice that all the Safe IL baselines failed to learn a low-cost driving policy because these IL-based
methods do not have explicit cost or reward feedback, and only fitting on those safe state and action
transition pairs are insufficient to satisfy the safety requirements due to the imperfection of the
offline demonstrations. Meanwhile, the Safe RL baselines seem to perform better, as they explicitly
constrain the learned target policy with a preset cost threshold. The actor-critic framework that
alternates between policy improvement and policy evaluation could implicitly guide the target policy
to avoid some low-reward or high-cost behaviors. However, CPQ seems to be overly conservative
in that it fails to balance efficiency and safety, thus always procrastinating near the starting zone
to avoid getting a large cost penalty. On the other hand, ICIL, BNN, BEAR-Lag, and BCQ-Lag
seem to have high success rates in policy mismatch settings, yet FUSION could still outperform
them by a large margin (over 10%). (ii) In the dynamics mismatch case where the online testing
environments have significantly different traffic dynamics and different types of roadblocks from the
training environments, the performance gap between our methods and other baselines even enlarged,
for example, we can see the success rate of Bear-Lag and BCQ-Lag drops by 40%, and the evaluation
cost of BCQ-Lag also violates the cost constraints. In contrast, although FUSION has a slightly lower
reward than what it has in policy mismatch, the cost is still below the set threshold 1, and the success
rate is also significantly higher than other baselines by over 30%.

For RQ3, we take a deeper look at the exact driving performance in different road contexts in Figure 4.
We provide a failure mode analysis in the following radar plot (Figure 4), the larger the pentagon
is, the better overall safety performance it has. The plot provides an episode-wise frequency of five
different safety behavior categories, including (i) AR: arrival rate among all episodes; (ii) NS: not
speeding in the episode, which counts the ratio of timestep where the agent exceeds a speed limit of
40 kph on the urban local roads; (iii) IT: in-time (complete the route within the time limit of 1,000
steps per episode); (iv) CF: collision-free in a single episode; (v) SL: stay in-lane without violating
the lane constraints. The result shows that our proposed FUSION (red) can consistently outperform
the expert policies (grey with shadows) and other baselines, especially in the hardest Roundabout
environment.

For RQ4, we provide additional ablation studies in Table 2. We compare FUSION with three of its
variants: (i) FUSION-Short, which uses shorter context in the safety-aware transformer to model
the whole sequence; (ii) FUSION w/o CEWM, which does not consider the causal ensemble world
model learning, and only uses the behavior cloning term as supervised signals; (iii) FUSION w/o
CBL, which neglects the safety-aware bisimulation learning. The result confirms that the FUSION
benefits from all its design, including the spatiotemporal information from CEWM and additional
safety awareness in the transformer model via CBL.

Furthermore, we visualize the learned attention map of FUSION’s safety-aware causal transformer
in Figure 5. The x-axis represents the source (previous) nodes and the y-axis represents the target
(future) nodes. The attention map is a low-triangular matrix because only the tokens of previous
timesteps affect the tokens in the future.
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Figure 5: Visualization of Attention matrix on the
same trajectories. We compare different layers of
the attention map of two models: FUSION and
FUSION without CEWM. More visualization over
diverse trajectories is on our website.

We find that FUSION has a clear hierarchy in the
attention map: (i) the attention map of the first
layer is actually very sparse, as FUSION only at-
tends tokens from previous one timestep, which
essentially models the whole decision-making
process in a Markovian manner. (ii) FUSION at-
tends the preference tokens that include cost-to-
go (red) and reward-to-go (green) to the future
state and action tokens, trying to balance both of
them for the decision-making process in a long
horizon. (iii) FUSION captures world dynamics
and policy by attending previous states (blue)
to the future value prediction and action nodes.
Such semantically meaningful interpretation as
well as the heterogeneity of attention weights
on different layers indicate that FUSION ben-
efits from CEWM by hierarchically capturing
structural information reflected in the attention
maps. In contrast, as shown in the second row
of Figure 5, FUSION without CEWM does not capture the above sparsity and interpretability, yet the
second and third layers tend to resemble each other. The reason is that the variant without CEWM
lacks sequential awareness with more informative training signals during the offline training stage.

Variants Policy Mismatch Dynamics Mismatch
Reward (↑) Cost (↓) Succ. Rate (↑) Reward (↑) Cost (↓) Succ. Rate (↑)

Short 100.86±3.40 0.77±0.09 0.34±0.07 98.63±2.36 0.79±0.06 0.34±0.04
w/o CEWM 94.24±6.50 0.67±0.11 0.41±0.06 81.70±3.82 0.60±0.04 0.24±0.04

w/o CBL 104.54±4.04 3.46±0.21 0.58±0.09 90.34±4.28 5.60±0.32 0.08±0.01
FUSION 139.95±4.24 0.52±0.06 0.90±0.03 117.40±4.30 0.90±0.14 0.82±0.04
Expert 131.32±29.60 16.02±9.46 0.81±0.15 129.71±28.84 17.58± 9.71 0.72±0.20

Table 2: Ablation studies on FUSION’s variants. Bold means the best.

5 Conclusions

In this paper, we propose FUSION, a trustworthy autonomous driving system with a causality-
empowered safe reinforcement learning algorithm in an offline setting. We first design a safety-aware
causal transformer termed CEWM to model the causal relationship between the state space, reward
value, and cost value at different timesteps. Then we regularize the learned representation in CEWM
with a CBL to enforce their compactness via safety-aware bisimulation in an implicit way, then
greedily infer the action during online deployment. Exhaustive empirical results show that our
method consistently outperforms offline demonstration and several strong baselines in safe IL or
offline safe RL under diverse urban autonomous driving scenarios. We also conduct extensive analysis
to analyze the benefits of different modules that we design in FUSION and show a comprehensive and
interpretable evaluation of FUSION against its variants or other baselines. One potential limitation
is that all the experiments are conducted in the MetaDrive simulator since it is more portable than
CARLA or other autonomous driving simulators. It would be interesting to extend FUSION’s
framework to other autonomous vehicle simulators with higher fidelity, as well as the multi-agent RL
settings in the near future.
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A Additional Related Works

Safety-aware Decision Making from Offline Data. To bring up safety awareness of autonomous
vehicles, most of the recent works formulate the safe decision-making problem with constrained
optimization [7, 32, 33]. Still, there have been several different roadmaps for solving this problem. For
the IL-based approach, [17, 34] propose implicit safe constraints in IL via uncertainty quantification
and Bayesian abstraction from the expert data. These approaches depend their safety on the small
discrepancy between the learned trajectory and expert trajectory. More explicitly, InterFuser [7]
proposes a safe controller that utilizes interpretable intermediate features to directly constrain the
controller output within a safety set. On the other hand, offline Reinforcement Learning (RL)
agents manage to balance safety and efficiency with additional reward, cost, and cost threshold
information along the trajectories [35, 36]. To fully extract the temporal information in offline
trajectories, recent works turn offline RL into a sequential modeling problem by utilizing the power
of transformers [23, 37, 38, 39]. However, most of these works ignore the inherent structures of MDP
in either spatial or temporal domain, which limits the policy’s generalizability.

State Abstraction for Decision Making. To improve the performance of decision-making agents
with some extra structural information, some recent works have focused on deriving state abstraction
for generalizable decision-making using representation learning tricks. In the IL realm, [18] proposes
Invariant Causal Imitation Learning (ICIL) to deal with the distribution shift with domain-invariant
causal features. Based on uncertainty quantification, [17, 34, 40] propose ensemble representation
that leverages multi-modal sensor inputs to improve the generalizability for self-driving agents.
PlanT [6] proposes a learnable planner module based on object-centric representations. The RL
field has seen developments in state abstraction through self-supervised learning methods, including
time contrastive learning [41], hierarchical skill decomposition [19] and deep bisimulation metric
learning [27, 42]. In autonomous driving applications, state and action space are usually factorizable,
[14, 15] propose to train RL agents under the guidance of causal graphs to improve generalizability
by discovering the latent structure in the world or policy model. The intersection of state abstraction
with offline Safe RL is unexplored, yet crucial, as enhanced LfD can advance real-world autonomous
driving.
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